<table>
<thead>
<tr>
<th>S.No</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A Bidirectional LLC Resonant Converter With Automatic Forward and Backward Mode Transition</td>
</tr>
<tr>
<td>2</td>
<td>A BL-CSC Converter-Fed BLDC Motor Drive With Power Factor Correction</td>
</tr>
<tr>
<td>3</td>
<td>A Fast DC-Bus Voltage Controller for Bidirectional Single-Phase AC/DC Converters</td>
</tr>
<tr>
<td>4</td>
<td>A High Gain Input-Parallel Output-Series DC/DC Converter With Dual Coupled Inductors</td>
</tr>
<tr>
<td>5</td>
<td>A High Step-Up Converter with Voltage-Multiplier Modules for Sustainable Energy Applications</td>
</tr>
<tr>
<td>6</td>
<td>A High Step-Up DC to DC Converter Under Alternating Phase Shift Control for Fuel Cell Power System</td>
</tr>
<tr>
<td>7</td>
<td>A High-Efficiency MOSFET Transformer less Inverter for Non isolated Micro inverter Applications</td>
</tr>
<tr>
<td>8</td>
<td>A Multi-Input Bridgeless Resonant AC-DC Converter for Electromagnetic Energy Harvesting</td>
</tr>
<tr>
<td>9</td>
<td>A Novel Drive Method for High-Speed Brushless DC Motor Operating in a Wide Range</td>
</tr>
<tr>
<td>10</td>
<td>A Novel High step-up DC/DC Converter Based on Integrating Coupled Inductor and Switched-Capacitor Techniques for Renewable Energy Applications</td>
</tr>
<tr>
<td>11</td>
<td>A Quasi-Z-Source Direct Matrix Converter Feeding a Vector Controlled Induction Motor Drive</td>
</tr>
<tr>
<td>12</td>
<td>Analysis of Dual-Carrier Modulator for Bidirectional Non inverting Buck–Boost Converter</td>
</tr>
<tr>
<td>14</td>
<td>Bridgeless PFC-Modified SEPIC Rectifier With Extended Gain for Universal Input Voltage Applications</td>
</tr>
<tr>
<td>15</td>
<td>Derivation, Analysis, and Comparison of No isolated Single-Switch High Step-up Converters with Low Voltage Stress</td>
</tr>
<tr>
<td>16</td>
<td>Double-Switch Equalizer Using Parallel- or Series-Parallel-Resonant Inverter and Voltage Multiplier for Series-Connected Super capacitors</td>
</tr>
<tr>
<td>17</td>
<td>Input-Series–Output-Parallel-Connected Buck Rectifiers for High-Voltage Applications</td>
</tr>
<tr>
<td>18</td>
<td>Large-Signal Characterization of Power Inductors in EV Bidirectional DC–DC Converters Focused on Core Size Optimization</td>
</tr>
<tr>
<td>19</td>
<td>Naturally Clamped Soft-Switching Current-Fed Three-Phase Bidirectional DC/DC Converter</td>
</tr>
<tr>
<td>20</td>
<td>Novel Modular Multiple-Input Bidirectional DC–DC Power Converter (MIPC) for HEV/FCV Application</td>
</tr>
<tr>
<td>21</td>
<td>PFC Cuk Converter-Fed BLDC Motor Drive</td>
</tr>
<tr>
<td>22</td>
<td>Predictive Voltage Control of Transformer less Dynamic Voltage Restorer</td>
</tr>
<tr>
<td>23</td>
<td>Soft-Switching AC-Link Three-Phase AC–AC Buck–Boost Converter</td>
</tr>
<tr>
<td>24</td>
<td>The Delta Configured Modular Multilevel Converter</td>
</tr>
<tr>
<td>25</td>
<td>Transformer less Hybrid Power Filter Based on a Six-Switch Two-Leg Inverter for Improved Harmonic Compensation Performance</td>
</tr>
<tr>
<td>26</td>
<td>Two-Switch Voltage Equalizer Using an LLC Resonant Inverter and Voltage Multiplier for Partially Shaded Series-Connected Photovoltaic Modules</td>
</tr>
<tr>
<td>27</td>
<td>Wide Damping Region for LCL-Type Grid-Connected Inverter with an Improved Capacitor-Current-Feedback Method</td>
</tr>
</tbody>
</table>

POWER SYSTEMS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>A Novel Control Method for Transformer less H-Bridge Cascaded STATCOM With Star Configuration</td>
</tr>
<tr>
<td>29</td>
<td>A Phase-Shifted-PWM D-STATCOM Using a Modular Multilevel Cascade Converter (SSBC)—Part I: Modeling, Analysis, and Design of Current Control</td>
</tr>
<tr>
<td>30</td>
<td>A Zero-Sequence Voltage Injection-Based Control Strategy for a Parallel Hybrid Modular Multilevel HVDC Converter System</td>
</tr>
<tr>
<td></td>
<td>Project Title</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>31</td>
<td>An Adaptive Power Oscillation Damping Controller by STATCOM With Energy Storage</td>
</tr>
<tr>
<td>32</td>
<td>Analysis and Impacts of Implementing Droop Control in DFIG-Based Wind Turbines on Micro grid/Weak-Grid Stability</td>
</tr>
<tr>
<td>33</td>
<td>Full-bridge Reactive Power Compensator with Minimized Equipped Capacitor and its Application to Static Var Compensator</td>
</tr>
<tr>
<td>34</td>
<td>Minimization of the DC Component in Transformer less Three-Phase Grid-Connected Photovoltaic Inverters</td>
</tr>
<tr>
<td>35</td>
<td>Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications</td>
</tr>
<tr>
<td>36</td>
<td>Reactive Power Management in Islanded Micro grid—Proportional Power Sharing in Hierarchical Droop Control</td>
</tr>
</tbody>
</table>

PROJECT SUPPORT TO REGISTERED STUDENTS:

1) IEEE Base paper.
2) Abstract Document.
3) Future Enhancement (based on Requirement).
4) Modified Title / Modified Abstract (based on Requirement).
5) Complete Source Code.
6) Final Report / Document