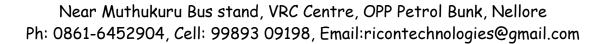


You Dream IT We Create IT

2015 IEEE EEE PROJECT TITLES - R	
S.No	POWER ELECTRONICS
1	A Bidirectional LLC Resonant Converter With Automatic Forward and Backward Mode Transition
2	A BL-CSC Converter-Fed BLDC Motor Drive With Power Factor Correction
3	A Fast DC-Bus Voltage Controller for Bidirectional Single-Phase AC/DC Converters
4	A High Gain Input-Parallel Output-Series DC/DC Converter With Dual Coupled Inductors
5	A High Step-Up Converter with Voltage-Multiplier Modules for Sustainable Energy Applications
6	A High Step-Up DC to DC Converter Under Alternating Phase Shift Control for Fuel Cell Power System
7	A High-Efficiency MOSFET Transformer less Inverter for Non isolated Micro inverter Applications
8	A Multi-Input Bridgeless Resonant AC-DC Converter for Electromagnetic Energy Harvesting
9	A Novel Drive Method for High-Speed Brushless DC Motor Operating in a Wide Range
10	A Novel High Step-up DC/DC Converter Based on Integrating Coupled Inductor and Switched-Capacitor
	Techniques for Renewable Energy Applications
11	A Quasi-Z-Source Direct Matrix Converter Feeding a Vector Controlled Induction Motor Drive
12	Analysis of Dual-Carrier Modulator for Bidirectional Non inverting Buck–Boost Converter
12	Bidirectional PWM Converter Integrating Cell Voltage Equalizer Using Series-Resonant Voltage
	Multiplier for Series-Connected Energy Storage Cells
14	Bridgeless PFC-Modified SEPIC Rectifier With Extended Gain for Universal Input Voltage Applications
15	Derivation, Analysis, and Comparison of No isolated Single-Switch High Step-up Converters with Low
	Voltage Stress
16	Double-Switch Equalizer Using Parallel- or Series-Parallel-Resonant Inverter and Voltage Multiplier for
17	Series-Connected Super capacitors
17	Input-Series—Output-Parallel-Connected Buck Rectifiers for High-Voltage Applications
18	Large-Signal Characterization of Power Inductors in EV Bidirectional DC–DC Converters Focused on Core Size Optimization
19	Naturally Clamped Soft-Switching Current-Fed Three-Phase Bidirectional DC/DC Converter
20	Novel Modular Multiple-Input Bidirectional DC–DC Power Converter (MIPC) for HEV/FCV Application
21	PFC Cuk Converter-Fed BLDC Motor Drive
22	Predictive Voltage Control of Transformer less Dynamic Voltage Restorer
23	Soft-Switching AC-Link Three-Phase AC–AC Buck–Boost Converter
24	The Delta Configured Modular Multilevel Converter
25	Transformer less Hybrid Power Filter Based on a Six-Switch Two-Leg Inverter for Improved Harmonic
	Compensation Performance
26	Two-Switch Voltage Equalizer Using an LLC Resonant Inverter and Voltage Multiplier for Partially
	Shaded Series-Connected Photovoltaic Modules
27	Wide Damping Region for LCL-Type Grid-Connected Inverter with an Improved Capacitor-Current-
	Feedback Method
POWER SYSTEMS	
28	A Novel Control Method for Transformer less H-Bridge Cascaded STATCOM With Star Configuration
29	A Phase-Shifted-PWM D-STATCOM Using a Modular Multilevel Cascade Converter (SSBC)—Part I:
	Modeling, Analysis, and Design of Current Control
30	A Zero-Sequence Voltage Injection-Based Control Strategy for a Parallel Hybrid Modular Multilevel
	HVDC Converter System

Near Muthukuru Bus stand, VRC Centre, OPP Petrol Bunk, Nellore Ph: 0861-6452904, Cell: 99893 09198, Email:ricontechnologies@gmail.com


You Dream IT We Create IT

31	An Adaptive Power Oscillation Damping Controller by STATCOM With Energy Storage
32	Analysis and Impacts of Implementing Droop Control in DFIG-Based Wind Turbines on Micro grid/ Weak-Grid Stability
33	Full-bridge Reactive Power Compensator with Minimized Equipped Capacitor and its Application to Static Var Compensator
34	Minimization of the DC Component in Transformer less Three-Phase Grid- Connected Photovoltaic Inverters
35	Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications
36	Reactive Power Management in Islanded Micro grid—Proportional Power Sharing in Hierarchical Droop Control

PROJECT SUPPORT TO REGISTERED STUDENTS:

- 1) IEEE Base paper.
- 2) Abstract Document.
- 3) Future Enhancement (based on Requirement).
- 4) Modified Title / Modified Abstract (based on Requirement).
- 5) Complete Source Code.
- 6) Final Report / Document

